Vibrational Frequencies, Assignments, and Normal-Coordinate Analysis for the Methyl Isocyanide–Borane Complex

FUMIO WATARI

Received April 23, 1981

The infrared (4000-200 cm⁻¹) and Raman (4000-100 cm⁻¹) spectra of CH₃NC·¹⁰BH₃, its deuterated species, and CH₃NC·BH₃ have been recorded for the solid state. Fundamental vibrations, except the internal torsional mode, have been assigned on the basis of C_{3v} symmetry. The N=C stretching frequency was found to increase ca. 150 cm⁻¹ upon complex formation. Normal-coordinate analysis has been carried out in the staggered configuration. The N=C force constant was found to increase ca. 10% upon complex formation in agreement with the strengthening of the N=C bond indicated by the structural data, which is the main cause of the upward frequency shift of the N≡C stretch. The C-B force constant was found to have a value of 2.90 mdyn/Å, which is larger than the N-B constant (2.45 mdyn/Å) in CH₃CN·BH₃, suggesting that methyl isocyanide is a stronger base than methyl cyanide.

Introduction

Many donor-acceptor complexes of methyl cyanide with metal and nonmetal acceptors have been examined in various spectroscopic studies.¹ It was already known long before Werner's theory on the coordination complex that isocyanides, isomers of cyanides, form adducts with metal compounds. Now a number of isocyanide complexes of zerovalent metals and metal ions are known.² Although this implies that isocyanides act as donors, isocyanide complexes with nonmetal acceptors are somehow little known.

Recently methyl isocyanide-borane has been prepared by mixing methyl isocyanide and diborane in the gas phase at a low pressure of 1-2 torr.³ The stability of the adduct is noticeable in the respect that methyl cyanide-borane completely dissociates in the gas phase.^{4,5} Further, the structure of methyl isocyanide-borane has been determined by microwave spectroscopy, which has revealed that the N = C distance is shorter by 0.001 Å in comparison with that of the free isocyanide.3

X-ray structural studies for $CH_3CN\cdot BX_3$ (X = F, Cl) have shown a decrease in the C≡N bond length.⁶ Several complexes of methyl cyanide show an unusual upward shift of the C=N stretching frequency upon complex formation.^{1,5,7,8} Normal-coordinate analyses for the complexes^{5,7,8} have exhibited that the C=N force constant actually increases upon complex formation in accordance with the increased bond strength implied by the decrease in the C = N bond length and the upward shift of the $C \equiv N$ stretching frequency.

In expectation of similar vibrational features in methyl isocyanide-borane associated with the N=C bond shortening, the present study was planned to observe and to analyze the infrared and Raman spectra of the methyl isocyanide-borane complex.

Experimental Section

Methyl isocyanide was prepared, according to Stevens et al.,³ in a sealed glass tube with a break-seal and a ground-glass joint. The tube was connected to a vacuum line by means of the ground joint, and after evacuation, the break-seal was opened. Methyl isocyanide was recovered from the silver complex by heating the mixture up to 140 °C and collecting the methyl isocyanide in a trap held at -196

(8) Shriver, D. F.; Swanson, B. Inorg. Chem. 1971, 10, 1354.

Table I. Description and Numbering of the Fundamental Vibrations of CH₃NC·BH₃^a

A, Class	3
ν_1 CH ₃ sym str	v_{ϵ} BH, sym def
ν_{2} BH, sym str	ν , C-N str
v_2 N=C str	v_{e} C-B str
v_4 CH ₃ sym def	.,
A, Class	
$\nu_{\rm B}$ torsic	n
E Class	
$\nu_{\rm s}$ CH ₃ deg str	ν_{13} CH ₃ rock
ν_{10} BH ₃ deg str	v_{14} BH ₃ rock
ν_{11} CH ₃ deg def	ν_{15} CNC def
ν_1 , BH, deg def	V. NCB def

^a Abbreviations used: sym, symmetric; deg, degenerate; str, stretch; def, deformation.

°C. The crude product containing a small amount of hydrogen cyanide was purified by vacuum distillation. Methyl isocyanide was collected in a trap held at -95 °C (toluene slush) and HCN at -196 °C. The purity was checked by the infrared spectrum. Methyl- d_3 isocyanide was prepared in a similar manner with methyl- d_3 iodide (Merck Sharp and Dohme) instead of methyl iodide.

Diborane(6) enriched in ¹⁰B (94 atom % boron-10) was prepared, according to Shapiro et al.,⁹ by the reduction of ${}^{10}BF_3 \cdot O(C_2H_5)_2$ by lithium aluminum hydride or deuteride. Preparation of boron-10enriched boron trifluoride etherate was described elsewhere.⁵ Isotopically normal diborane(6) was prepared by the LiAlH₄ reduction of BF· $_3O(C_2H_5)_2$ (81% $^{11}B-19\%$ $^{10}B).$

The infrared spectra (4000-200 cm⁻¹) were recorded at -196 °C with a Hitachi Model 345 infrared spectrophotometer, which was calibrated with standard gases.¹⁰ The methyl isocyanide-borane adduct was prepared by condensing methyl isocyanide and diborane in a 2:1 mole ratio at -196 °C into a small glass tube with a stopcock and a ground-glass joint. After the stopcock was closed, the tube was allowed to warm naturally to room temperature. It was then opened to the vacuum line for a while to remove volatile substances. The tube was attached by means of the ground joint to a low-temperature cell. After evacuation, the sample was allowed to sublime onto a cooled CsI optical plate mounted in a copper block of a liquid-nitrogen reservoir end. The infrared spectra of the ¹⁰B compounds are shown in Figure 1.

The Raman spectra (4000-100 cm⁻¹) were recorded on a JEOL JRS S-1 laser Raman spectrophotometer equipped with an NEC GLG 5800 He-Ne laser with the sample in a capillary tube. The spectrometer was calibrated with the emission lines of neon. The adduct was prepared in a small glass tube with a side capillary in a manner similar to that employed in the infrared work. After the reaction tube was sealed off from the vacuum line, the adduct was collected by

⁽¹⁾ Yarwood, J., Ed. "Spectroscopy and Structure of Molecular Complexes"; Plenum Press: London, 1973.

⁽a) Cotton, F. A.; Zingales, F. J. Am. Chem. Soc. 1961, 81, 351. (b) (2)

 ^{(2) (}a) Cottoin, F. A., Engales, F. J. Am. Chem. Soc. 1991, 81, 531. (b) Malatesta, L. Adv. Inorg. Chem. 1959, 1, 283.
 (3) Stevens, J. F., Jr.; Bevan, J. W.; Curl, R. F., Jr.; Geanangel, R. A.; Grace Hu, M. J. Am. Chem. Soc. 1977, 99, 1442.
 (4) Emeleus, H. J.; Wade, K. J. Chem. Soc. 1960, 2614.

Watari, F. J. Phys. Chem. 1980, 84, 448. (5)

Swanson, B.; Shriver, D. F.; Ibers, J. A. Inorg. Chem. 1969, 8, 2182. Swanson, B.; Shriver, D. F. Inorg. Chem. 1970, 9, 1406. (6)(7)

⁽⁹⁾ Shapiro, I.; Weiss, H. G.; Schmich, M.; Skolnik, S.; Smith, G. B. L. J. Am. Chem. Soc. 1952, 74, 901. "Tables of Wavenumbers for the Calibration of Infrared

⁽¹⁰⁾ Spectrometers", 2nd ed.; Pergmanon Press: Elmsford, NY, 1977.

Figure 1. Infrared spectra of (A) $CH_3NC^{.10}BH_3$, (B) $CH_3NC^{.10}BD_3$, (C) $CD_3NC^{.10}BH_3$ and (D) $CD_3NC^{.10}BD_3$ recorded in the solid state at -196 °C.

sublimation into the capillary immersed in liquid nitrogen. Then the capillary was sealed off. Tiny colorless and transparent crystals grew while the capillary was stored in a refrigerator for a few days. The Raman spectra of the ^{10}B compounds are shown in Figure 2.

Vibrational Assignments

Assignments are made on the basis of C_{3v} molecular symmetry. From group-theoretical consideration, it follows that the molecule has 7 A₁, 1 A₂, and 8 E normal modes, where the A₁ and E modes are infrared and Raman active while the A₂ mode is inactive in both. The designation of the fundamentals is given in Table I.

The CH₃ and CD₃ vibrations are found in the regions of those in free methyl isocyanide and methyl- d_3 isocyanide^{11,12} with small frequency shift. The methyl rocks in CH₃NC·BH₃ and CH₃NC·¹⁰BH₃ are obscured in a strong band of a BH₃ deformation. The CH₃ and CD₃ rocks are too weak in intensity to be observed in the Raman spectra.

Figure 2. Raman spectra of (A) $CH_3NC^{10}BH_3$, (B) $CH_3NC^{10}BD_3$, (C) $CD_3NC^{10}BH_3$, and (D) $CD_3NC^{10}BD_3$ recorded in the solid state at ambient temperature.

A strong absorption is observed at $2312-2314 \text{ cm}^{-1}$ in each isotopic species and assigned to the N=C stretch, which is higher by about 150 cm⁻¹ than that in free methyl isocyanide (2166 cm⁻¹).^{11,12}

The degenerate ¹⁰BH₃ stretch ν_{10} is strongly observed at 2394–2396 cm⁻¹ accompanying a shoulder at the low-frequency side, which is assigned to the symmetric ¹⁰BH₃ stretch ν_2 . The BD₃ stretches, ν_2 and ν_{10} , are well separated. The degenerate ¹⁰BD₃ stretch ν_{10} in CH₃NC·¹⁰BD₃ is assigned to a strong band at 1804 cm⁻¹, and that in CD₃NC·¹⁰BD₃ is observed as a doublet at 1807 and 1797 cm⁻¹. The symmetric ¹⁰BD₃ stretch ν_2 is assigned to a less intense band observed at

^{(11) (}a) Williams, R. L. J. Chem. Phys. 1956, 25, 658. (b) Mattern, J. G.; Fletcher, W. H. Spectrochim. Acta 1962, 18, 995.
(12) Duncan, J. L.; McKean, D. C.; Mackenzie, M. W.; Pena, J. P. J. Mol.

⁽¹²⁾ Duncan, J. L.; McKean, D. C.; Mackenzie, M. W.; Pena, J. P. J. Mol. Spectrosc. 1979, 76, 55.

Figure 3. Infrared spectra of (A) $CH_3NC \cdot BH_3$ and (B) $CH_3NC \cdot ^{10}BH_3$ in the 1200-500-cm⁻¹ region recorded in the solid state at -196 °C.

1695-1698 cm⁻¹. In the Raman spectra, the relative intensities of the two BD₃ stretches ν_2 and ν_{10} are reversed: the symmetric stretch is more intense than the degenerate one.

A strong infrared band at 1123 cm⁻¹ in CH₃NC¹⁰BH₃ shifts to 1112 cm⁻¹ in CH₃NC·¹¹BH₃ (assigned in its natural isotopic abundance), while a 1141-cm⁻¹ band observed in CH₃NC. $^{10}BH_3$ shows no $^{10}B-^{11}B$ isotopic shift (Figure 3): therefore the 1123-cm⁻¹ band is assigned to the symmetric ¹⁰BH₃ deformation ν_5 and the 1141-cm⁻¹ band to the degenerate ν_{12} . In this case the symmetric deformation is more intense than the degenerate one in both the infrared and Raman spectra. Upon deuteration of the borane group these shift to around 870 cm^{-1} (880 cm⁻¹ in CH₃NC·¹⁰BD₃ and 864 cm⁻¹ in CD₃NC·¹⁰BD₃) and to 830 cm⁻¹, of which the higher frequency bands are more intense than the lower frequency ones. As with the BH₃ deformations, the stronger bands of high frequency are assigned to the symmetric ¹⁰BD₃ deformation ν_5 and the weaker bands of low frequency to the degenerate ¹⁰BD₃ deformation v_{12} .

A band observed at 848 cm⁻¹ in CH₃NC·¹⁰BH₃ exhibiting a ¹⁰B-¹¹B isotopic shift (Figure 3) is assigned to the ¹⁰BH₃ rock ν_{14} , which shifts to 713 cm⁻¹ upon deuteration of the borane group.

The C-N stretch ν_6 is assigned to a band observed around 1000 cm⁻¹ in a variety of isotopic substitution shifting toward higher frequency upon adduct formation. This mode is weak in intensity in the infrared spectrum, contrary to that for free methyl isocyanide, whose C-N stretch mode is strong in both the infrared and Raman spectra.

A band around 600 cm⁻¹ exhibiting a ¹⁰B–¹¹B isotopic shift (Figure 3) is assigned to the C–B stretch, which is strongly observed in all the isotopic compounds.

Two bands are observed below 400 cm^{-1} , of which the higher frequency band is assigned to the CNC deformation and the lower frequency one to the NCB deformation.

The assignments of the fundamentals for the ^{10}B adducts are given in Tables II–V.

Infrared bands that are not attributed to fundamentals are listed in Table VI together with tenative assignments. In the spectra of the BD_3 adducts, bands not attributable to a overtone or a combination are observed in the B-H and B-D stretching regions. These will be due to BHD_2 compounds.

Table II. Observed and Calculated Frequencies (cm^{-1}) for $CH_3NC^{10}BH_3$ and Potential Energy Distributions^a

	IR	Raman	calcd	PED ^b
ν_1	2948 w	2948	2947	99 S
ν_2	2377 sh	2367	2374	97 S ₂
ν_3	2313 vs	2299	2312	$87S_{3}, 6S_{6}, 4S_{7}$
ν_4	1409 w	1410	1410	95 S ₄
ν_{s}	1123 s	1118	1124	$89S_{5}, 9S_{7}$
ν_6	994 vw	995	996	$72S_{6}, 25S_{7}$
ν_{7}	623 s	622	625	$65S_{7}, 24S_{6}, 10S_{3}$
ν_{9}	3014 w	3016	3016	98 S
ν_{10}	2396 vs	2390	2394	99 5 10
ν_{11}	1439 m	1444	1442	$87S_{11}, 7S_{13}$
ν_{12}	1141 w	1140	1139	95 S
ν_{13}	1126 ^c		1130	$89S_{13}, 4S_{11}$
ν_{14}	848 w	850	854	$84S_{14}, 10S_{16}$
ν_{15}	365 s	369	367	$39S_{15}, 40S_{16}, 19S_{14}$
ν_{16}^{11}		180	182	$48S_{16}, 36S_{15}, 14S_{14}$

^a Abbreviations used: w, weak; m, medium; s, strong; v, very. Raman intensities are not given since photomultiplier sensitivity varies in a wide range within the spectral region. ^b The potential energy distribution is defined as $PED_{ij} = 100F_{ii}L_{ij}^2/\Sigma F_{ii}L_{ij}^2$. ^c The same frequency as that of ν_{13} for CH₃NC.¹⁰BD₃ was assigned because this was obscured by the strong absorption of ν_s .

Table III. Observed and Calculated Frequencies (cm^{-1}) for $CH_3NC^{10}BD_3$ and Potential Energy Distributions^a

-	-		-	
	IR	Raman	calcd	PED ^b
$\overline{\nu_1}$	2646 w	2947	2947	99 S ,
ν_2	1698 m	1693	1696	98 S ,
ν.	2312 vs	2300	2314	$88S_{1}, 6S_{2}, 4S_{3}$
ν_{A}	1409 w	1409	1410	95 S
v,	880 m	877	880	73S, 17S, 7S,
ν	1005 m	1004	1007	52S2, 34S2, 11S
v,	565 s	565	567	595, 185, 115, 95
ν̈́	3014 m	3017	3016	98 S
ν_{10}	1804 vs	1807	1804	98 S
ν_{11}	1438 m	1445	1442	87 S , 7 S ,
ν_{12}	830 w	828	832	98 5
ν_{13}	1126 w		1130	92 S 13
V14	713 w	714	713	685, , 225,
ν_{15}	336 m	338	337	435, 305, 25S,
ν_{16}		.170	168	$52S_{16}, 26S_{15}, 21S_{14}$
			h	

^a See footnote a of Table II. ^b See footnote b of Table II.

Table IV. Observed and Calculated Frequencies (cm^{-1}) for $CD_3NC^{+10}BH_3$ and Potential Energy Distributions^a

	IR –	Raman	calcd	PED ^b
ν,	2117 w	2114	2119	97 S ,
ν_2	2370 sh	2364	2374	97 S
ν_3	2313 s	2298	2313	$85S_{3}, 6S_{6}, 4S_{7}$
ν_4	1098 m	1097	1096	69S , 27S
ν_{5}	1124 s	1116	1124	87 S , 9 S
ν_6	950 w	947	947	$45S_{6}, 35S_{7}, 17S_{4}$
ν_7	6 06 m	604	604	$60S_{7}, 27S_{6}, 10S_{7}$
ν_{q}	2268 m	2263	2266	97 S
ν_{10}	2394 vs	2393	2394	99 5 10
ν_{11}	1039 m	1044	1034	90 S
ν_{12}	1141 w	1136	1139	98 5
ν_{13}	892 w		892	70 S , 15 S ,
ν_{14}	848 w	846	842	62 5 , 29 5
ν_{15}	357 m	360	357	$35S_{15}, 42S_{16}, 20S_{14}$
ν_{16}		171	172	$43S_{16}, 41S_{15}, 13S_{14}$

^a See footnote a of Table II. ^b See footnote b of Table II.

Normal-Coordinate Analysis

Normal-coordinate analysis was carried out with use of the FG matrix method of Wilson¹³ and a standard iterative least-squares method.⁵

⁽¹³⁾ Wilson, E. B., Jr.; Decius, J. C.; Cross, C. "Molecular Vibrations"; McGraw-Hill: New York, 1955.

Table V. Observed and Calculated Frequencies (cm^{-1}) for $CD_3NC^{+10}BD_3$ and Potential Energy Distributions^{*a*}

	IR	Raman	calcd	PED ^b
ν_1	2119 w	2114	2119	97 <i>S</i> ,
ν_2	1695 m	1689	1696	98S
ν_3	2314 vs	2298	2315	$87S_{3}, 6S_{6}, 4S_{7}$
νa	10 99 m	1109	1097	$68S_{4}, 27S_{5}$
ν_{s}	864 m	861	863	$69S_{5}, 23S_{6}$
ν_6	972 w	967	9 70	$19S_{4}, 42S_{7}, 25S_{5}, 11S_{4}$
ν,	533 s	549	551	$57S_{7}, 21S_{6}, 9S_{5}, 9S_{7}$
$\nu_{\rm o}$	2269 w	2262	2266	97 <i>S</i>
v_{10}	1807 s	1806	1804	97S10
	1797 s			10
ν_{11}	1038 m	1036	1034	90 <i>S</i> ,
ν_{12}	830 vw	825	832	985
ν_{13}	893 w		883	90S
ν_{14}	712 vw	713	709	$68S_{14}, 20S_{16}$
ν_{15}	329 m	329	327	$39S_{15}, 33S_{16}, 25S_{14}$
ν_{16}^{10}		157	159	$48S_{16}, 31S_{15}, 19S_{14}$

^a See footnote a of Table II. ^b See footnote b of Table II.

Table VI. Combination and Overtone Bands (cm^{-1}) of Methyl Isocyanide-Borane $({}^{10}B)$

CH₃NC¹⁰BH₃

obsd		assigt, calcd		obsd	assigt, calcd
2930	ν_{3} +	$-\nu_2 = 2936$		1694	$2\nu_{14} = 1696$
2561	ν_{10}	$+ \nu_{16} = 2576, \nu_5 + \nu_1$, =	1498	$v_{12} + v_{13} = 1506$
	25	$562, \nu_{11} + \nu_{13} = 2565$	•	1492	$\nu_{13} + \nu_{15} = 1491$
2530	ν_4 +	$-\nu_{13} = 2535, \nu_4 + \nu_5 =$	= 2532	1212 ^a	$v_{14} + v_{15} = 1213$
2270	$2\nu_{12}$	$_{2} = 2282$		1112	CH ₃ NC ¹¹ BH ₃
2227 ^a	$2\nu_{5}$	$= 2246, \nu_5 + \nu_{13} = 22$	249	740 ⁶	$2\nu_{15} = 738$
1978 ^a	$2\nu_{6}$	$= 1988, \nu_{12} + \nu_{14} = 1$	989		
		CH ₃ NC	\cdot^{10} BD ₃		
obs	sd	assigt, calcd	obsd	8	assigt, calcd
332	0	$\nu_3 + \nu_4 = 3317$	1768 ^a	CH,	$NC^{10}BHD_{2}(?)$
287	2	$2\nu_{11} = 2876$	1709	ν_{z} +	$\nu_{12} = 1710$
253	2	$\nu_4 + \nu_{13} = 2535$	1656	$2\nu_{12}$	= 1660
238	3	CH ₃ NC ¹⁰ BHD ₂ (?)	1644 ^a	CH]	$NC^{10}BHD$, (?)
229	2	$\nu_4 + \nu_5 = 2289$	1596	ν_{11} +	$\nu_{16} = 1608$
226	7	$\nu_{11} + \nu_{12} = 2268$	1560	$\nu_{6} +$	$\nu_{\gamma} = 1570$
224	6	$2\nu_{13} = 2252$	1540	$\nu_{12} +$	$\nu_{14} = 1543$
214	8	$\nu_{11} + \nu_{14} = 2151$	1463	$\nu_{13} +$	$-\nu_{15} = 1462$
199	0	$v_5 + v_{13} = 2006$	1052	$\nu_{5} +$	$\nu_{16} = 1050,$
188	3 ^a	$\nu_{5} + \nu_{6} = 1885$		$_{-}\nu_{14}$	$+ \nu_{15} = 1049$
I 83	5	$\nu_6 + \nu_{12} = 1835,$	867	CH31	$NC^{11}BD_3$
		$\nu_{13} + \nu_{14} = 1839$	679 ⁰	$2v_{5} =$	= 676
		CD ₃ NC	•10 BH ₃		
ob	sd	assigt, calcd	obsd	a	issigt, caled
329	97	$\nu_{9} + \nu_{11} = 3307$	2065 ^a	ν_{c} +	$\nu_{h} = 2074$
326	54	$v_{1} + v_{2} = 3262$	2042	<i>n</i> +	$\nu = 2048$

3264	$v_2 + v_{13} = 3262,$	2042	$\nu_4 + \nu_6 = 2048$
	$v_3 + v_6 = 3263$	1983	$\nu_6 + \nu_{11} = 1989,$
2912	$\nu_3 + \nu_2 = 2919$		$\nu_{\pm} + \nu_{\pm3} = 1990,$
2754	$\nu_{10} + \nu_{15} = 2751$		$\nu_1, + \nu_1 = 1989$
2227	$\nu_4 + \nu_{12} = 2239$	1691	$v_{4} + v_{2} = 1704$
2211 ^a	$\nu_{1} + \nu_{2} = 2222$	1202^{a}	$\nu_{11} + \nu_{16} = 1210,$
			$\nu_{11} + \nu_{22} = 1205$

CD, NC¹⁰BD,

obsd	assigt, calcd	obsd	assigt, calcd
3297	$\nu_9 + \nu_{11} = 3307$	1817 ^a	$v_5 + v_6 = 1836$
3287	$\nu_3 + \nu_6 = 3286$	1740 ^a	$CD_{3}NC^{10}BHD_{2}$ (?)
2904	$\nu_4 + \nu_{10} = 2901$	1655	$2\nu_{12} = 1660$
2858	$\nu_3 + \nu_7 = 2867$	1644 ^a	$CD_3NC^{10}BHD_2$, (?)
2384	$CD_3NC^{10}BHD_2$ (?)	1540	$\nu_{12} + \nu_{14} = 1542$
2210 ^a	$\nu_2 + \nu_7 = 2248$	1425	$2\nu_{12} = 1424$
2069 ^a	$2\nu_{11} = 2076$	860	$CD_3NC^{11}BD_3$
1957	$v_4 + v_5 = 1963,$	663 ⁶	$2\nu_{s} = 658$
	$\nu_{10} + \nu_{10} = 1959$		

 a These bands are also observed in the Raman spectra. b Raman bands.

 Table VII.
 Molecular Parameters and Coordinates for Methyl Isocyanide-Borane

	Bond Lengths	, Å ^a
	r = C - H = 1.10	$D = N \equiv C = 1.155$
	R = B - H = 1.22	L = C - B = 1.566
	d = C - N = 1.416	
	Bond Angles, I	Deg ^a
	$\alpha = \text{HCH} = 110.0$	$\gamma = \text{HBC} = 105.7$
	$\beta = \text{HCN} = 109.0$	$\theta = \text{CNC} = 180.0$
	$\delta = HBH = 113.0$	$\xi = NCB = 180.0$
	Symmetry Coord	inates ^b
4	$S_1 = (1/3^{1/2})(\Delta r_1 + \Delta r_2 + \Delta r_3)$	
	$S_{2} = (1/3^{1/2})(\Delta R_{1} + \Delta R_{2} + \Delta R_{3})$	
	$S_3 = \Delta D$	
	$S_4 = (1/n_1^{1/2})[m_1(\Delta \alpha_1 + \Delta \alpha_2 + \Delta \alpha_3)]$	$\alpha_3) - (\Delta\beta_1 + \Delta\beta_2 + \Delta\beta_3)]^c$
	$S_{s} = (1/n_{2}^{1/2})[m_{2}(\Delta\delta_{1} + \Delta\delta_{2} + \Delta\delta_{1})]$	$(\Delta \gamma_1 + \Delta \gamma_2 + \Delta \gamma_3)]^a$
	$S_6 = \Delta d$	
٨	$S_7 = \Delta L$ $S_7 = A_2 P$	
E 2	$S_{8} = \Delta \tau$ $S_{-} = (1/2^{1/2})(\Delta r - \Delta r)$	
L	$S_{9} = (1/2) (\Delta P_{2} - \Delta P_{3})$ $S_{1} = (1/2) (\Delta P_{1} - \Delta P_{3})$	
	$S_{10} = (1/2^{1/2})(\Delta \alpha_2 - \Delta \alpha_3)$	
	$S_{11} = (1/2^{1/2})(\Delta \alpha_2 - \Delta \alpha_3)$ $S_{11} = (1/2^{1/2})(\Delta \beta_2 - \Delta \beta_3)$	
	$S_{12} = (1/2^{1/2})(\Delta \beta_2 - \Delta \beta_3)$	
	$S_{13} = (1/2^{1/2})(\Delta p_2 - \Delta p_3)$ $S_{13} = (1/2^{1/2})(\Delta p_2 - \Delta p_3)$	
	$S_{14} = A\theta$	
	$\tilde{S}_{16} = \Delta \tilde{S}$	
а	Reference 3 ^b The projections of	R and r on a plane

^a Reference 3. ^b The projections of R_1 and r_1 on a plane perpendicular to the threefold axis make an angle of 180° with each other. The angle α_1 lies between r_2 and r_3 and the angle β_1 between r_1 and L, etc. ^c $n_1 = 3(m_1^2 + 1)$, $m_1 = -3^{1/2} \cos \beta / \cos (\alpha/2)$. ^d $n_2 = 3(m_2^2 + 1)$, $m_2 = -3^{1/2} \cos \gamma / \cos (\delta/2)$. ^e Torsion.

Table VIII. Symmetry Force Constants for CH₃NC·BH₃^a

	A ₁ class		E class	
$F_{1,1} \\ F_{2,2} \\ F_{3,3} \\ F_{4,4} \\ F_{5,5} \\ F_{6,6} \\ F_{7,7} \\ F_{2,5} \\ F_{4,6} \\ F_{5,7} \\ F_{5,7}$	5.004 (4) 3.277 (5) 18.293 (9) 0.645 (1) 0.541 (3) 4.887 (31) 2.908 (26) 0.125 (31) -0.499 (7) -0.304 (7)	$F_{9,9}$ $F_{10,10}$ $F_{11,11}$ $F_{12,12}$ $F_{13,13}$ $F_{14,14}$ $F_{15,15}$ $F_{16,16}$ $F_{9,11}$ $F_{10,12}$ $F_{11,13}$ $F_{14,16}$ $F_{15,16}$	$\begin{array}{c} 4.719 (44) \\ 2.979 (16) \\ 0.564 (14) \\ 0.389 (1) \\ 0.794 (8) \\ 0.422 (13) \\ 0.293 (23) \\ 0.381 (20) \\ 0.299 (61) \\ -0.050 (29) \\ -0.043 (16) \\ 0.158 (13) \\ 0.080 (11) \end{array}$	

^a The subscripts identify $F_{i,j}$ with symmetry coordinates *i* and *j* as defined in Table VII. Stretching force constants are in mdyn/A, bending constants in mdyn A/rad², and stretch-bend interactions in mdyn/rad. The dispersions of the force constants are given in parentheses.

G matrix elements were calculated from molecular parameters determined by the microwave study.³ The molecular parameters and symmetry coordinates are presented in Table VII. Symmetry force constants were calculated so as to fit the calculated frequencies to the observed ones for the four ¹⁰B isotopic species simultaneously. Infrared frequencies were mainly used for the calculation except ν_{16} , for which Raman frequencies were employed. The doublet frequencies observed for the ¹⁰BD₃ degenerate stretch ν_{10} in CD₃NC-¹⁰BD₃ were averaged. The individual eigenvalues were weighted as $w_i = 1/\lambda_i$. Since the A₂ torsional mode was not observed, no calculation was performed for it.

Initial diagonal force constants for the methyl isocyanide portion were taken from the values of free methyl isocyanide¹⁴

(14) Duncan, J. L. Spectrochim. Acta 1964, 20, 1197.

Table IX. Comparison of Vibrational Frequencies (cm⁻¹) and Valence Force Constants (mdyn/Å) for the Skeletal Bonds of CH_3NC , CH_3CN , and Their ¹⁰ BH₃ Adducts

	^ν N≡C	ν C-N	^v CNC	$\nu_{\rm C-B}$	f _{N≡C}	$f_{\mathbf{C}-\mathbf{N}}$	f_{CNC}	f_{C-E}
CH ₃ NC CH ₃ NC ^{.10} BH ₃ ^c	2166 ^{<i>a</i>} 2313	949 ^a 994	263 ^a 365	623	16.65 ^b 18.29	5.40 ^b 4.88	0.176 0.293	2.90
	νc≡n	ν _C C	νccn	ν _{N-B}	fc≡n	fc-c	f _{ccn}	f _{N-B}
CH ₃ CN CH ₃ CN· ¹⁰ BH ₃ ^e	2267 ^d 2354	920 ^d 978	362 ^d 404	588	18.11 ^b 18.79	5.15 ^b 5.08	0.351 ^b 0.364	2.45
							-	

^a Reference 11. ^b Reference 14. ^c This work. ^d Nakagawa, I.; Shimanouchi, T. Spectrochim. Acta 1962, 18, 513. ^e Reference 5.

and those of the BH_3 group transferred from the values of methyl cyanide-borane.⁵ The initial C-B force constant was assumed to be the same value as the N-B constant in methyl cyanide-borane.⁵

An interaction constant between two vibrational modes not sharing at least one common atom was fixed at the value of zero. Other interaction constants were added in the refinement one by one, but any constant that was smaller in magnitude than its dispersion or smaller than 0.02 in magnitude or whose inclusion caused the secular equation to be ill conditioned was omitted from the refinement, being constrained to zero. This produced a good fit between the calculated and observed frequencies with an average deviation from the observed frequencies of 0.21% for the A₁ class and of 0.40% for the E including all the four ¹⁰B isotopic compounds.

The calculated frequencies are given in Tables II–V, together with the potential energy distributions. The symmetry force constants and the dispersions from the last cycles of the least-squares refinement are given in Table VIII.

Discussion

Frequencies and valence force constants for the skeletal bonds of CH_3NC and CH_3NC .¹⁰BH₃ are collected in Table IX together with the corresponding quantities of CH_3CN and CH_3CN .¹⁰BH₃.⁵

The N=C stretching frequency increases ca. 150 cm⁻¹ and also the N=C valence force constant increases significantly (9.8%) upon adduct formation. As seen from the potential energy distributions (Tables II-V) the N=C stretch couples with the C-N and C-B stretches, which causes the upward shift in the N=C frequency. But since the coupling is very small, such a large frequency increase can be explained only by an increase in the force constant. The increase in the N=C force constant is consistent with the strengthening in the N=C bond indicated by the structural data.³

The C—N stretching frequency also increases upon adduct formation, but the force constant decreases contrary to the case of the N=C bond. The potential energy distributions (Tables II-V) show that the C—N stretching mode largely couples with the C—B stretch, which leads to the elevation of the C—N frequency in spite of the decrease in the force constant. Moreover it couples with the BD₃ symmetric deformation in the BD₃ adducts whose frequency is lower than that of the C—N stretch: therefore the C—N stretching frequencies of the BD₃ adducts are higher than those of the corresponding BH₃ adducts.

The BD₃ symmetric deformation, on the other hand, couples with the C—B stretch. Accordingly, vibrational couplings exist among the C—N stretch, the C—B stretch, and the symmetric deformation of the borane group. The couplings cause these vibrations not to be observed at definite positions, but their frequencies vary from one isotope to the others.

The CNC bending frequency increases ca. 100 cm⁻¹ upon adduct formation. The increase in the CNC bending force constant is remarkable, reaching up to 66% upon adduct formation. This is surprising when compared with the increase in the CCN bending frequency (40 cm⁻¹) and force constant (4%) in CH₃CN·BH₃.

If methyl isocyanide is considered to have a structure made up of contributions from resonance forms I and II, the rela-

$$CH_{3} - \stackrel{\uparrow}{N} = \stackrel{\bar{C}}{C} CH_{3} - \stackrel{N}{N} = C CH_{3} - \stackrel{\bar{N}}{N} = \stackrel{\bar{C}}{C} - \stackrel{\bar{B}}{B}H_{3}$$

$$CH_{3} - \stackrel{N}{N} = \stackrel{\bar{C}}{C} - \stackrel{\bar{B}}{B}H_{3}$$

$$IV$$

tively small CNC bending frequency and force constant can be explained in terms of a contribution from the bent form II.¹² When complexation occurs with borane, two extreme forms are presented as III and IV. The experimental results can fairly well be explained in terms of more contribution from the form III to a structure of methyl isocyanide-borane. An enhancement of triple-bond nature in the N=C bond leads to a decrease in the $N \equiv C$ bond length and hence to increases in the force constant and stretching frequency. A lesser importance of the bent form IV in the adduct leads to a increase in the CNC bending force constant. It is a marked difference between the borane adducts with methyl isocyanide and cyanide that there is no equivalent counterpart in methyl cyanide. The greater importance of the form III in the adduct results in a less polar C-N bond, which leads to a diminution in infrared intensity of the C-N stretch.

The C—B force constant in methyl isocyanide-borane is larger (18%) than the N—B constant in methyl cyanide-borane. The strengths of the donor-acceptor bonds correctly reflect adduct stabilities since methyl cyanide-borane dissociates completely in the gas phase at room temperature to the respective components,^{4,5} while no such dissociation of methyl isocyanide-borane is found when the solid film is prepared on the CsI substrate by sublimation for infrared measurement. Although further studies on complexes with various Lewis acids must be conducted for an extensive argument on the Lewis base strength of the isocyanides, it can be said that methyl isocyanide is a stronger Lewis base to borane than methyl cyanide.

Registry No. $CH_3NC \cdot {}^{10}BH_3$, 80243-27-2; $CH_3NC \cdot {}^{10}BD_3$, 80243-28-3; $CD_3NC \cdot {}^{10}BH_3$, 80243-29-4; $CD_3NC \cdot {}^{10}BD_3$, 80243-30-7; $CH_3NC \cdot BH_3$, 62630-46-0.